Search results

Search for "decoupling layer" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • of the substrate, for instance by adding or intercalating a decoupling layer, are often the better choice. In the best case, these interfacial layers have a large bandgap to prevent a hybridization with molecular states as well as with the metallic/semiconducting substrate. All the strategies for
  • . The significantly reduced resonance width allowed for resolving vibronic states in both frontier orbitals on graphene/Pt(111) by STS. The semiconducting 2D material MoS2 may act as a decoupling layer for molecules from the underlying metal substrate if the molecular resonances lie within the MoS2
  • Sabine Maier Meike Stohr Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands 10.3762/bjnano.12.71 Keywords: decoupling
PDF
Editorial
Published 23 Aug 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • materials at the nanoscale. In this work, we study hexagonal boron nitride (h-BN), an atomically thin 2D layer, that is van der Waals-coupled to a Cu(111) surface. The system is of interest as a decoupling layer for functional 2D heterostructures due to the preservation of the h-BN bandgap and as a template
PDF
Album
Letter
Published 17 Jun 2021

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
PDF
Album
Full Research Paper
Published 03 Nov 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • energies leading to self-assembly is also active on oxide surfaces and that the oxygen-terminated CoO(111) surface can be used as a decoupling layer for molecular studies. Chemical structure of (a) Co-DPP (1) and (b) 2H-TCNPP (2). (a) STM image of the 1BL CoO film on Ir(100) with a corrugation of 100 pm
PDF
Album
Full Research Paper
Published 05 Oct 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • . Scanning tunneling microscopy (STM) and spectroscopy (STS) measurements of the pyrene derivatives adsorbed on a Cu(111)-supported hexagonal boron nitride (hBN) decoupling layer provided access to spatially and energetically resolved molecular electronic states. We demonstrate that the pyrene electronic gap
  • -ylethynyl substituents have been used to steer and control the self-assembly on hBN/Cu(111), including the formation of dense-packed arrays and intricate kagome networks. The resulting structures deviate in part from the assemblies previously studied on Ag(111) [48]. Additionally, the hBN decoupling layer
  • decoupling layer, the electronic structure of the pyrene derivatives was probed at the submolecular level, visualizing an MO-like contrast and evidencing effects of supramolecular organization. Importantly, three distinct molecular resonances could be detected, and the response to template-induced gating
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • the modes with strong electron–phonon coupling. Keywords: decoupling layer; molybdenum disulfide (MoS2); scanning tunneling microscopy, tetracyanoquinodimethane (TCNQ); vibronic states; Introduction When molecules are adsorbed on metal surfaces, their electronic states are strongly perturbed by
  • and K′ by circularly polarized light [32]. The potential as decoupling layer for molecules may become even more appealing by the fact that monolayers of transition metal dichalcogenides can be grown in situ on different metal surfaces, where the precise hybridization and band alignment depend on the
  • nature of the substrate [33]. One may thus envision tuning the bandgap alignment for decoupling either the lowest unoccupied (LUMO) or the highest occupied molecular orbital (HOMO) of the molecules. While MoS2 on Au(111) has already been established as an outstanding decoupling layer [26], we will now
PDF
Album
Full Research Paper
Published 20 Jul 2020

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • taken to be a graphene monolayer for simplicity, intended as a decoupling layer as discussed in section ’DFT-NEGF transport theory’. The symmetry of the HOMO is clearly visible and is not noticeably reduced by the hybridization with the substrate. Figure 5b shows the absolute value squared |tTS|2 of the
PDF
Album
Full Research Paper
Published 06 Oct 2017

Adsorption and electronic properties of pentacene on thin dielectric decoupling layers

  • Sebastian Koslowski,
  • Daniel Rosenblatt,
  • Alexander Kabakchiev,
  • Klaus Kuhnke,
  • Klaus Kern and
  • Uta Schlickum

Beilstein J. Nanotechnol. 2017, 8, 1388–1395, doi:10.3762/bjnano.8.140

Graphical Abstract
  • insulating layer to electronically decouple an adsorbate from the metal substrate. The ratios between the on-surface Ei − Ea gaps and the unperturbed gas-phase gaps are listed in Table 1. For a similar decoupling layer (KCl), but various substrates, the decoupling strength decreases with the work function of
  • pinning for HOMO and LUMO [17] is not limited to molecules adsorbed onto bare metals, but is also valid for single molecules on metals covered with a thin decoupling layer having homogeneous properties. An exception is found for the HOMO on h-BN where the intrinsic dipole moment of the molecule within the
  • ) substrate, comparative studies using a different decoupling layer, namely KCl on varying metal substrates, were performed. For pentacene on KCl/metals, it is surprising that in spite of the complexities of molecule–metal adsorption, the work function of the surface plays a decisive role in determining the
PDF
Album
Full Research Paper
Published 06 Jul 2017
Other Beilstein-Institut Open Science Activities